Changes between Version 4 and Version 5 of glass


Ignore:
Timestamp:
05/29/12 13:03:44 (8 years ago)
Author:
branden
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • glass

    v4 v5  
    6262A line similar to the following: 
    6363 
    64 TimeRange -600.0 500.0 -820.0 
    65  
    66 appears in the glass_assoc.d config file. The Nucleator processing is concerned with 2 time windows. The first time window is processed outside of the Nucleator, and directly determines the inputs to the Nucleator. The first time window defines the unassociated picks that will be sent to the Nucleator as picks that are associable with the current pick. The second time window defines the range of potential origin times that should be used by the Nucleator for constructing trial origins. The TimeRange command takes three arguments: the start and end of the first time window (Pick times), and the start of the second time window (Origin times). For example, if the current pick came from station XYZ at 10:45:00, then the above TimeRange command would cause all unassociated picks between 10:35:00 (10:45:00 - 600) and 10:53:20 (10:45:00 + 500) to be sent to the Nucleator along with the current pick. The command would also instruct the Nucleator to try potential origins between 10:31:20 (10:45:00 - 820) and 10:45:00 (10:45:00 + 0). 
     64!TimeRange -600.0 500.0 -820.0 
     65 
     66appears in the glass_assoc.d config file. The Nucleator processing is concerned with 2 time windows. The first time window is processed outside of the Nucleator, and directly determines the inputs to the Nucleator. The first time window defines the unassociated picks that will be sent to the Nucleator as picks that are associable with the current pick. The second time window defines the range of potential origin times that should be used by the Nucleator for constructing trial origins. The !TimeRange command takes three arguments: the start and end of the first time window (Pick times), and the start of the second time window (Origin times). For example, if the current pick came from station XYZ at 10:45:00, then the above !TimeRange command would cause all unassociated picks between 10:35:00 (10:45:00 - 600) and 10:53:20 (10:45:00 + 500) to be sent to the Nucleator along with the current pick. The command would also instruct the Nucleator to try potential origins between 10:31:20 (10:45:00 - 820) and 10:45:00 (10:45:00 + 0). 
    6767 
    6868 
     
    7171A line similar to the following: 
    7272 
    73 TimeStep 5.0 
    74  
    75 appears in the glass_assoc.d config file. The Nucleator iterates through a set of trial origin times within the potential origin time window. The time delta between iterations in seconds is defined by the TimeStep command. So if TimeStep is 5.0, then the Nucleator will iterate between origins that are 5 seconds apart. The smaller the TimeStep value, the closer the Nucleator should be to the actual origin time and the more processing iterations that will have to be done, so there is a tradeoff between accuracy and processing effort. There are two factors that affect what the TimeStep value should be set to: residual distance limits and locator ability. Because the Nucleator fixes the origin time and depth, any residuals are distance based. If the TimeStep value is set too high, then it increases the artificial distance residual that may be imposed on an origin because the actual event time lay between two iterative steps. So if an event occurs at time 1232.5, TimeStep is set to 5, and the closest two origin time iterations are 1230.0 and 1235.0, then an artificial time residual of 2.5 seconds is being imposed on the nucleated origin. Because the Nucleator deals only in distance residuals, that 2.5 seconds becomes converted to a distance value. When that residual distance value gets to be too great then the Nucleator will no longer be able to associate the origin. The Nucleator is a tool to associate picks into an Origin, its association is not meant to be the Glass end-all final location answer. Within Glass there is a Locator that will refine solutions after they come out of the Nucleator. So a TimeStep value must be chosen that is not too processing intensive but is also not so wide as to preclude origins based on the artificial residuals between time iterations and actual event time. A TimeStep of 5.0, results in a maximum artificial window of 2.5 seconds, with a maximum P velocity of about 13km/sec, that ends up at a worst case artificial distance residual of 32km. If the distance Cut is set to 50km, this leaves only 18km available for anomalies due to actual vs. theoretical 1-d travel times, and depth iteration intervals. 
     73!TimeStep 5.0 
     74 
     75appears in the glass_assoc.d config file. The Nucleator iterates through a set of trial origin times within the potential origin time window. The time delta between iterations in seconds is defined by the !TimeStep command. So if !TimeStep is 5.0, then the Nucleator will iterate between origins that are 5 seconds apart. The smaller the !TimeStep value, the closer the Nucleator should be to the actual origin time and the more processing iterations that will have to be done, so there is a tradeoff between accuracy and processing effort. There are two factors that affect what the TimeStep value should be set to: residual distance limits and locator ability. Because the Nucleator fixes the origin time and depth, any residuals are distance based. If the TimeStep value is set too high, then it increases the artificial distance residual that may be imposed on an origin because the actual event time lay between two iterative steps. So if an event occurs at time 1232.5, !TimeStep is set to 5, and the closest two origin time iterations are 1230.0 and 1235.0, then an artificial time residual of 2.5 seconds is being imposed on the nucleated origin. Because the Nucleator deals only in distance residuals, that 2.5 seconds becomes converted to a distance value. When that residual distance value gets to be too great then the Nucleator will no longer be able to associate the origin. The Nucleator is a tool to associate picks into an Origin, its association is not meant to be the Glass end-all final location answer. Within Glass there is a Locator that will refine solutions after they come out of the Nucleator. So a TimeStep value must be chosen that is not too processing intensive but is also not so wide as to preclude origins based on the artificial residuals between time iterations and actual event time. A !TimeStep of 5.0, results in a maximum artificial window of 2.5 seconds, with a maximum P velocity of about 13km/sec, that ends up at a worst case artificial distance residual of 32km. If the distance Cut is set to 50km, this leaves only 18km available for anomalies due to actual vs. theoretical 1-d travel times, and depth iteration intervals. 
    7676 
    7777